| <b>Enrollment No:</b> | <br>Exam Seat No: |  |
|-----------------------|-------------------|--|
|                       |                   |  |

# **C.U.SHAH UNIVERSITY**

## **Summer Examination-2018**

**Subject Name: Mathematics-II** 

Subject Code: 4SC02MTC1 Branch: B.Sc. (All)

Semester: 2 Date: 04/05/2018 Time: 10:30 To 01:30 Marks: 70

#### **Instructions:**

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

#### Q-1 Attempt the following questions: (14)

- a) Find polar form of 1+i (01)
- Simplify:  $\frac{(\cos 3\theta i \sin 3\theta)^{4}(\cos 4\theta + i \sin 4\theta)^{-6}}{(\cos 2\theta + i \sin 2\theta)^{3}(\cos \theta i \sin \theta)^{-7}}.$  (01)
- c) Define: Cauchy sequence. (01)
- d) State Cauchy's general principle of convergence. (01)
- e) Prove that cos(ix) = cos hx. (02)
- f) Solve:  $(D^2 D 6)y = 0$ . (02)
- g) Evaluate:  $\frac{1}{D^2}(x^3)$ . (02)
- **h**) Find:  $\int_0^{\frac{\pi}{2}} \sin^{10} x \, dx$  (02)
- i) Find:  $\int_0^{\frac{\pi}{2}} \sin^4 x \cos^4 x \ dx$  (02)

## Attempt any four questions from Q-2 to Q-8

## Q-2 Attempt all questions (14)

- a) State and prove De Moivre's theorem. (05)
- **b**) Solve:  $x^4 + i = 0$ . (05)
- Find modulus and principal argument of the complex number  $\frac{1+2i}{1-(1-i)^2}$  (04)

## Q-3 Attempt all questions (14)

- a) Show that  $\log \frac{x+iy}{x-iy} = 2i \tan^{-1} \frac{y}{x}$  (05)
- **b)** Prove that  $\cos 6\theta = 32 \cos^6 \theta 48 \cos^4 \theta + 18 \cos^2 \theta 1$ . (05)
- c) Find real and imaginary part of  $\tan h (x + iy)$ . (04)

a) Solve: 
$$\frac{d^2y}{dx^2} - 2 \frac{dy}{dx} + 4y = e^x \sin x$$
. (05)



|            | <b>b</b> ) | Solve: $x^2 \frac{d^3 y}{dx^3} + 3x \frac{d^2 y}{dx^2} + \frac{dy}{dx} = x^2 \log x$                                                                     | (05)         |
|------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|            | c)         | Solve: $(3D^2 + 2D - 1)y = 5e^{5x}$ .                                                                                                                    | (04)         |
| Q-5        |            | Attempt all questions                                                                                                                                    | (14)         |
|            | a)         | Prove that $I_n = \int \sin^n x  dx = \frac{-\sin^{n-1} x \cos x}{n} + I_{n-2}$ .                                                                        | (06)         |
|            | b)         | Evaluate: $\int_0^a x^4 (a^2 - x^2)^{\frac{3}{2}} dx$                                                                                                    | (04)         |
|            | c)         | Find: $\int_{0}^{2} \frac{x^{4}}{\sqrt{4-x^{2}}} dx$                                                                                                     | (04)         |
| Q-6        |            | Attempt all questions                                                                                                                                    | (14)         |
|            | a)         | Prove that $\lim_{n\to\infty} \sqrt[n]{n} = 1$ .                                                                                                         | (06)         |
|            | b)         | Show that $\lim_{n\to\infty} \frac{3+2\sqrt{n}}{\sqrt{n}} = 2$ .                                                                                         | (04)         |
| 0.7        | c)         | Expand $\sin^6 \theta$ in terms of cosine and sine multiple of $\theta$ .                                                                                | (04)<br>(14) |
| Q-7        | a)         | Attempt all questions<br>Show that the equation $2y^2 - 8yz - 4zx - 8xy + 6x - 4y - 2z + 5 = 0$                                                          | (14)<br>(06) |
|            | <b>u</b> ) | represents a cone whose vertex is $\left(-\frac{7}{6}, \frac{1}{3}, \frac{5}{6}\right)$ .                                                                | (00)         |
|            | <b>b</b> ) | Solve: $(D-2)^2 = e^{2x} + \sin 2x$ .                                                                                                                    | (04)         |
|            | <b>c</b> ) | Evaluate: $(1+\sqrt{3}i)^{90}+(1-\sqrt{3}i)^{90}$ .                                                                                                      | (04)         |
| <b>Q-8</b> |            | Attempt all questions                                                                                                                                    | (14)         |
|            | a)         | Find equation of cone which has vertex $(\alpha, \beta, \gamma)$ and generators intersects to conic $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ ; $z = 0$ . | (07)         |
|            | <b>b</b> ) |                                                                                                                                                          | (07)         |
|            | ~)         | Find equation of cylinder whose generator are parallel to $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and guiding curve $x^2 + y^2 = 25$ , $z = 0$ .       | (01)         |

